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Two cellular automata models are presented which simulate the immune 
response to the HIV-1 virus at the early stage of the infection. The simple 
model A is based on the generalized nearest neighbor interaction, and the com- 
plex model B on the explicitly defined local interactions between the neigh- 
boring sites. These two models are discussed in the context of related work by 
Pandey. 

KEY WORDS: Cellular automata; HIV-1 virus; immune response. 

Cellular automata (~) are dynamical systems, discrete in space and time, 
evolving on a lattice according to some local synchronous updating rule, 
which is a mapping of the Boolean set onto itself. Although the rule is in 
most cases simple, the long-time behavior of the automata can be very 
complex. Due to this complex behavior and to the Boolean character of 
each element, cellular automata are an efficient computational tool for 
modeling complex systems, such as biological processes, hydrodynamics, or 
Ising models. 

In recent years the study of immune response systems with conven- 
tional mathematical methods, i.e., differential equations (see, e.g., ref. 2 and 
references therein), and with cellular automata ~3 8) has been investigated 
with increasing effort. Some related work (9-n) deals with the immune 
response to the HIV virus. 
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In the human immunodeficiency 4 the role of the T4 helper and inducer 
cells is considered to be the fulcrum of the macroscopic immune reaction 
in the acquired immunodeficiency syndrome (AIDS), T4 cells, previously 
informed about the existence of the virus and of viral infected cells by 
macrophages, send out lymphokines, i.e., chemical signals, regulating 
T-type (mature in thymus) and other cells. The interaction of macrophages, 
T4 cells, and lymphokines from T4 cells cause the cytotoxic lymphocyte T8 
cells to mature and to roam the bloodstream, thus destroying viral infected 
cells. On the other hand, T4 cells are attacked by HIV-1 virus by its 
retroviral feature, i.e., T4 cells carry the genetic information of HIV-1. This 
dramatic feature of the HIV-I virus and of the free glucoproteins gp120, 
which mark the retrovirus and all types of HIV-1-infected cells at their sur- 
faces, is responsible for the mechanism that viral infected T4 cells are able 
to destroy themselves. In the cellular automata models presented here, we 
simply consider T4 helper cells, T8 cytotoxic cells, and HIV-1 viral infected 
cells, neglecting the action of other components (B-type cells, antibodies, 
memory cells, etc.), which are active in the immune system. 

Pandey a~ proposed a cellular automata model to simulate the 
immune response by taking into account the main mechanisms of T4, T8, 
and virus-infected cells. All calculations were carried out on a 3D cubic 
periodic lattice of 60 x 60 x 60 sites (3 x 216,000 cells). The cells interact by 
two different sets of rules (sets I and II), coupled by a coupling constant 
B. The latter is the probability that at a given site the rules of set I will be 
applied, while for set II the assigned probability is 1 -  B. In the quenched 
version of the model the distribution of B over the lattice remains constant 
with time, while in the annealed version, B is randomly distributed each 
time step. We calculated the same model using a 2D square periodic lattice 
with 512 x 512 sites (3 x 262,144 cells). All other parameters, such as the 
initial cell concentration and the coupling constant, were kept identical. 
The resulting cell concentration, the phase transition in the quenched and 
annealed models, and the oscillation of T4 and viral infected cells agree 
nearly perfectly (Fig. 1). Only the temporal development of the immune 
reaction is speeded up to some extent. Thus, instead of a 3D lattice, a 2D 
lattice can be used, offering greater computational efficiency. This state- 
ment agrees with the conclusion of Wiesner ~12) for the generalization of the 
Weisbuch Atlan model. ~6'7) We also investigated the oscillation between 
the fixed points. In both 3D and 2D models the oscillation of concentration 
for certain coupling constants immediately changes at each time step from 
low to high concentration (not shown in ref. 10). We carried out calcula- 
tions of a localized infection and found that the changes do not depend on 

4 See the single-topic issue of Scientific American (September 1988). 
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the initial local concentration. We also found a creation of viral infected 
cells from zero concentration, which should not occur in a healthy system�9 
We found no biological justification for the coupling constant B. 

For the early stage of the infection we propose the following two 
models taking into account T4, T8, and viral infected cells. We consider a 
2D square lattice with 512 x 512 sites and periodic boundary conditions 
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Fig. 1. Calculations of the annealed model by Pandey (1~ with coupling constant (a) B = 0 . 5  
and (b) B = 0.9, carried out on a 2D lattice of 512 x 512 sites. The concentration is normalized 
to the total number of cells ck on the lattice, the timesteps are, as in ref. ]0, in units of 5. The 
results nearly perfectly agree with those in ref. 10. 
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(torus). At each site of the lattice we assume three different types of cells 
ck ( k =  1, 2, 3) treated as Boolean variables, where c~ represents T4 helper 
cells, c2 T8 cytotoxic cells, and c3 viral infected cells. A high local concen- 
tration of cell ck is represented by 1, a low concentration by 0. The average 
concentration of ck on the lattice is given by pk=  ( l /N)zN=I  ck(j), N 
being the total number of sites. We formulate the interactions between 
these cells using the Boolean operations AND, OR, Exclusive-OR and 
NOT (A, v ,  |  ). 

S i m p l e  M o d e l  A. The model A is based on the interactions 
between different cells of the same site and on the generalized nearest 
neighbor interaction between cells of the same type. By means of the 
generalized nearest neighbor interaction (7'1~ the local concentration of a 
cell ck(x, y) at the particular site (x, y) interacts with all next neighboring 
cells of the same type by a logical OR summation, and thus the informa- 
tion can be spread over the lattice. A temporary value Ck is assigned to this 
cell as follows: 

Ck(x, y) = ck(x, y) v ck(x + 1, y) v ck(x -- 1, y) 

v ck(x, y +  1) v ck(x, y - -  1) (1) 

We now define the rules which describe the interactions between the 
different types of cells and apply them to the temporary values [Eq. (1)] 
at each site of the lattice: 

c'1 = C3 | C1 (2) 

c~= [C3/~ Ca] v C2 (3) 

c~= [C3 v C1] /x C2 (4) 

The primed cells c~, represent the status of the cells at a particular site after 
one time step. The local concentration of c~ cells at a particular site 
[-Eq. (2)] can only grow if c3 cells are present. This is the first response of 
a healthy immune system. If viral infected cells c3 are detected, Cl cells will 
be produced. On the other hand, as ca cells attack c~, they destroy them 
by changing the high local concentration of c~ cells to a low one. The con- 
centration of Cl does not change in case the concentration of Ca cells is low. 
According to Eq. (3), c2 cells will be activated if c I cells have recognized 
viral infected cells (logical AND in the bracket), which implicitly simulates 
lymphokine proliferation by macrophage-prepared Cl cells. This expression, 
together with the state of concentration of c2 at the considered site, takes 
care of the controlled growth of c2 cells. Since we consider the early stage 
of the viral infection, c2 cells are not allowed to decrease or to be infected 
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by c3 cells. The viral infected c 3 cells [Eq. (4)] grow proportionally to cl 
cells and only at low concentration of cytotoxic c2 cells. 

In the mean field approach, where each cell type has the same concen- 
tration everywhere (thus dealing with only one site), (6'7'I~ model A yields 
three stable fixed points, as shown in Table I. 

We carried out a calculation starting with a uniform random distribu- 
tion of Cl, c2, and c3 cells over the lattice. The initial average concentration 
is Pl = P2 = P3 ---- 0.001, which means that HIV-1 virus has been inserted in 
a healthy organism. The simulation started with an increase of c3 cells and 
a simultaneous decay of cl cells, while c2 cells grow continuously (Fig. 2). 
The growth of the c2 cells causes c 3 cells to vanish (T8 cytotoxic cells 
attack viral and viral infected ceils). The system reaches the equilibrium 
(1, 1, 0), which is one of the three fixed points (Table I). 

In order to see what happens in the case of a localized infection, we 
initialized the lattice by randomly distributing cl, c2 cells with mean con- 
centration Pl = P2 = 0.001 and setting zero the concentrations of these cells 
in a sublattice of 64 x 64 sites. In the same sublattice we assigned the value 
1 to all c3 cells. The qualitative results (Fig. 3) are the same as those in 
Fig. 2, but the growth of c3 cells at the first time steps is now more clear 
and the system reaches equilibrium faster. 

We also checked a probabilistic approach of model A, where the inter- 
action probability fl is the probability that at a particular site (active site) 
the averaging of Eq. (1) and the rules (2)-(4) will be applied. On the other 
hand, if as i te  remains nonactive (with probability 1 - f l ) ,  the cells c~ of this 
site keep their previous value (c~ = ck). In the case of the "quenched" ver- 

Table I. Fixed Points and Related Biological States in the 
Mean Field Approach for Model A 

Input state Fixed point Biological 
(C 1 , C2, C3) (CI, c2, c~) state 

(0, 0, 0) (0, 0, 0) Healthy 

(o, 1, o) 
(1, 1, 1) (0, 1, 0) Immunized 

(0,0, 1) 
(0,1, 1) 
(1, O, O) (1, 1, O) Susceptible 
(1,0, 1) 
(1, 1, O) 
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sion of this probabilistic approach, where the distribution of the active sites 
over the lattice with a certain/J remains constant with the time, we found 
that the final concentrations of Cl and c2 lie much lower than those in 
Fig. 2 and that they depend on the # (Fig. 4a). The reason is that stable 
islands on the lattice are built up, as shown in Fig. 4c. For the "annealed" 
version of model A, where the active sites are redistributed each time step 
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with certain probability /~, a delay of the final state has been observed, 
which is proportional to/~ (Fig. 4b). Finally, the same state as in Fig. 2 has 
been reached. 

C o m p l e x  M o d e l  B .  In the complex modelB the action of the 
components of the immune response remain as in model A, except for the 
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The lattice size is 128 x 128. 
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(c) 

Fig. 4. (Continued) 

interactions between the neighboring cells. The set of rules is defined as 
follows: 

C ] = ( ~ , ' [ C 3 ( * ) ] |  3 (5) 

Cr2=Q~ [C3(*) A Cl(*)]) V C2 (6) 

Cr3=(~_.~,[C3(*)ACI(:t:)] VC3) AC ~ (7) 

The primed cells c~ represent the status of the cells at a particular site, after 
one time step, as in model A. The summation Z ,  is a logical OR summa- 
tion of the bracket expression over the next neighboring cells of the 
particular site and the particular site itself (denoted as *); in the primed 
summation ( Z , )  the center site is excluded from the sum. Both summations 
denote the weight of the strength of the rule. 

If the c3 cells are highly concentrated in the neighborhood of a par- 
ticular site [the summation in Eq. (5) results in a logical 1 ], there will be 
a production of cl Cells which will survive in case the concentration of c3 
cells at the site is low. If there is high concentration of c3 cells at the 
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neighborhood of the site or at the site itself, then c~ cells will be destroyed. 
The bracket expression in Eq. (6) takes into account the concentration of 
c3 and c~ cells in the surrounding site and the site considered itself. If c~ 
cells have recognized viral infected cells (logical AND in the bracket), c2 
cells will be activated. The viral infected c3 cells [Eq. (7)] are allowed to 
grow if the neighborhood of the cell consists of contaminated c~ cells, and 
diminish if the local concentration of cytotoxic c2 cells at the site is high. 

We investigated the behavior of the model B starting from a low 
concentration for all cell types, i.e., Pk = 0.1, randomly distributed over the 
lattice. Several low initial concentrations have been tested. In all cases the 
qualitative results are the same and, in addition, the lower the initial 
concentration, the longer is the time needed to reach the equilibrium. The 
immune reaction starts immediately with an oscillatory activation of c~ 
cells (Fig. 5). This oscillatory behavior, with a constant amplitude, is the 
equilibrium state of the c~ cells. 'Their inducing function on the roaming 
cytotoxic c2 cells results in a monotonic increase of their concentration up 
to limiting saturation; contrary to model A and to the model by Pandey, 
it lies below the system saturation. The viral infected cells c3, origin of the 
stimulated immune reaction, start to populate their initial concentration. 
After some time steps they fall victim to the immune reaction and their 
concentration decreases below their initial concentration. The distribution 
of ct, c2, and c3 cells over the lattice is uniform and homogeneous and no 
formation of islands has been observed. 

We also investigated a probabilistic approach of model B, similarly to 
modelA. Both the quenched and the annealed versions yield the same 
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qualitative results; only the final concentrations decrease as the interaction 
probability/~ decreases (Fig. 6). We have also studied the spatial spreading 
of an initially localized infection as in model A. In this case, as expected, no 
reaction of the system is observed. 

In conclusion, we have presented two cellular automata models which 
seem to simulate reasonably the early stage of the macroscopic biological 
immune response to HIV-1 infection. Model B, based on the explicitly 
defined local interactionsl gives more detailed information about this 
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response than model  A, which was based on the generalized nearest 
neighbor  interaction. Thus, we tend to assume that  the local interaction 
model  B reflects the localized biological interactions of  the cells and 
model  A, in addition, reflects a biological interaction of the system which 
is distributed over the lattice th rough  the averaging of  Eq. (1). The biologi- 
cal interpretat ion of this averaging might  be a mechanical  mixing of the 
system. Fur ther  investigation of  the given models, which simulate the inter- 
mediate and final stages of the infection, respectively, including external 
intervention (vaccination), is the subject of for thcoming work. (133 
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